CommuniGate Pro
Version 5.1
Signals
 
 
 
Overview

Real-Time Signals

One of the main functions of the CommuniGate Pro Server is Real-time communication. Acting as a Signaling Center, the Server receives Real-time signals (Requests) from various sources (the SIP Module, internal sessions, and "call legs", internal kernel components, etc.). The Server either processes (terminates) these Requests itself, or it delivers them to remote entities (via the SIP protocol), or it delivers them to internal sessions and "call legs".

For each Requests, the Signal module optionally generates some provisioning Responses (such as "Trying" or "Ringing"), and one final Response.

AORs

Users configure their devices (IP phones, AV conferencing tools, Instant Messaging tools) to connect to a selected SIP Server when they go on-line. The Server registers the users by remembering their "SIP identifier" and the network (IP) addresses they use.

Each user has a unique "SIP identifier", also called AOR (Address of Record).

Each user may have several registrations active if that user has several communication devices in the on-line mode (an office IP Phone, a desktop computer, an instant messaging program on a laptop, etc.)

Registrations allow SIP users to communicate with each other without the knowledge of the network addresses being used, using just the "SIP identifiers" (AORs).

AORs have the same form as E-mail addresses: username@domainName. The CommuniGate Pro user AOR is the full name of the user Account, so the user SIP AOR name is exactly the same as the user E-mail address.

CommuniGate Pro uses the Router component for all Real-Time Communication operations, so Aliases, Forwarders, and other Routing methods work for Real-Time Communications, too.


Signals

A Signal is a basic Real-time Task. One Real-time entity sends Signals to some other Real-time entity to start, modify, or stop a communication dialog, to deliver a status update, etc.

The sending entity composes a Request object and sends it to the CommuniGate Pro Signal module. The Signal module processes the Request, optionally sends Requests to other entities, and returns a Response object to the sending entity.

Many CommuniGate Pro modules and components can use Signals:


Processing Requests

When the Signal Module receives a Request, it calculates the target URI for it. It takes the Request URI (or the first Route URI in the Request Route set), and uses the Router component to detect the Request destination. There are several possible outcomes of this process:

The following diagram illustrates the Signal flow inside the CommuniGate Pro Server:

Signal Scheme

Automated Processing (Rules)

After an address has been processed with the Router, but before it was relayed to a local or a remote entity, Server-wide and Cluster-wide Automated Signal Processing Rules are applied.

The Rules control how the Request is processed: they can direct it to a different destination, or they can reject the Request.

Only the Dialog-initiating Requests are processed with the Automated Rules.


Forking

The Signal module maintains the AOR (Address-of-Record) and Contact sets for each Request it processed. The module starts the Forking process by processing addresses in the AOR set.

When a 2xx response is received while processing any AOR, AOR processing stops. If the Request was an INVITE request, all outstanding Requests relayed to other AORs are cancelled.

When all AORs have been processed, the module returns the "best" processing result to the Request source.

When an AOR to be processed is Routed to a non-local address, that address is placed into the Contact set.

When an AOR to be processed is Routed to a local Group, all Group members are added to the AOR set.

When an AOR to be processed is Routed to a local Account, all Account active Registrations (registered addresses of the Account user devices) are added to the Contact set.

If an AOR already exists in the AOR set, it is not added to the AOR set.

If an address already exists in the Contact set, it is not added to the Contact set.

The Signal module checks each address it adds to the Contact set.
If the new Contact address is a Local Node address, the Request is passed to that Node for processing.
If the new Contact address is an external address, the Request is passed to the SIP Module for relaying.

When a local or an external entity returns a redirect-type Response, the module checks the initial AOR (the Request URI).

Configuring the Signal Component

You can use the WebAdmin Interface to configure the Signal component. Open the Real-Time pages in the Settings realm, then open the Signals page:

Processing
Log Level: Processors: Limit:
Log
Use this setting to specify the type of information the Signal component should put in the Server Log. Usually you should use the Failure (unrecoverable problems only), Major (Signal progress reports), or Problems (failures, progress reports, and non-fatal errors) levels. When you experience problems with the Signal component, you may want to set the Log Level setting to Low-Level or All Info: in this case the signal processing internals will be recorded in the System Log. When the problem is solved, set the Log Level setting to its regular value, otherwise your System Log files will grow in size very quickly.
The Signal component records in the System Log are marked with the SIGNAL tag.
Limit
This setting specifies how many Signal "tasks" the component can handle at the same time. If this limit is exceeded, new Signals are rejected, and an error Response is sent to the Signal sender.
Processors
The Signal component uses several simultaneous processors (threads) to process Signal "tasks". One processor can handle several Signal tasks. If you use many time-consuming Automated Rules, you should allow the component to use more processors for signal processing.

Sending Signals from Accounts

The CommuniGate Pro Server requires user authentication for certain Requests.

When requests are sent remotely via SIP, authentication is performed with the SIP module server component.
The XIMSS and XMPP modules send all Signals authenticated, on behalf of the logged-in Account.
The Real-Time Applications send Signals authenticated, on behalf of their current Account (unless the Application has impersonated itself as "nobody").

Processing
  Authenticate all outgoing calls  
Authenticate all outgoing calls
If this option is selected, the Signal component tries to route the addresses in From fields of the call-type Requests. If the From address is a local Account address and the request is not authenticated, the Signal component rejects it with the "authentication required" error code.

When a call-type Signal (an initial INVITE request with audio-video Session Descriptor) is authenticated, the Signal Module peforms additional processing of the authenticated Account.

The Signal component can limit the number of "calls" an Account can place over a specified period of time.

Flow Control
Reject Outgoing calls if placed more than in
Reject Outgoing calls
Use this option to specify a time period and the maximum number of call Signals the Account can place within that time period. If more calls are placed, they are rejected without processing.

Sending Signals to Accounts

If the first AOR in the set (the AOR specified in the Request URI) is a local Account address, and the Request is an INVITE request, the Account device registration is retrieved, along with certain Account settings and preferences.

An Account can have Automated Signal Rules, which are retrieved with Account device registrations. These Rules are "mixed" with the Domain-wide Rules specified for the Account Domain and are applied to all requests sent to the Account.

The Signal component controls how many "calls" (initial INVITE requests with audio-video Session Descriptors) an Account receives over a specified period of time.

Flow Control
Reject Incoming calls if received more than in
Reject Incoming calls
Use this option to specify a time period and the maximum number of call Signals the Account can receive within that time period. If more Signals are received, they are rejected without processing.

Service Calls

If a Request is routed to a *nnnn name in any of the local Domains (where nnnn is any sequence starting with a decimal digit), the Request is rerouted to its originator (the Request From: address).

This feature allows users to dial a *nnnn number to request a service from the Server. The Request is routed to the user's own Account, where it starts the Self-Call application. The application provides the requested service using the Request To: address to learn the dialed "service option" number.


Registrar Services

Communication devices used by CommuniGate Pro users should register themselves before they can receive Requests from other entities.

Registration Requests require user authentication.

One Account credentials can be used to modify registrations for a different Account, if the authenticated Account has the CanImpersonate access right for the target Account Domain.

To configure the Registrar Service options, open the Real-Time pages in the WebAdmin Settings realm, and select the Signals page.

Services
Registration Time: Minimal: Default: Maximal:
MS RTC: Integrate with Roster
Registration: Minimal
Use this option to specify the minimal Registration expiration time period accepted.
If a Registration Request contains a shorter expiration time, the Request is rejected, and the Response sent specifies this minimal accepted time. The entity (usually - a SIP device) can resend the Registration Request with an adjusted expiration time.
Registration: Default
This option value is used when a Registration Request does not specify a Registration expiration time.
Registration: Maximal
Use this option to specify the maximal Registration expiration time period accepted.
If a Registration Request contains a longer expiration time period, the period is shorten to the specified value.

Event Packages

The Signal Module supports several Event Packages. When it receives a SUBSCRIBE Request targeting a local Account, it may process the Request itself, without forwarding it to the Account registered entities.

The Signal module maintains "tuple" states for each Account, for each Event Package it supports. The module allows one or several entities to update the "tuples", and it aggregates them into one Account "state information" for the Package. When the aggregated "state information" changes, the module sends NOTIFY requests with the updated state to all subscribed entities.

The Signal module allows external entities to modify "tuples" using PUBLISH requests.

The Signal module allows external entities to modify "tuples" for certain Packages using non-standard SERVICE requests.

Presence

The Signal Module implements a Presence Server. The Module supports the PIDF, CPIM-PIDF and XPIDF Presence Information formats.

The Signal Module provides special processing for the REGISTER requests. If an external entity (a SIP device) indicates support for the SUBSCRIBE method, the module establishes a presence subscription dialog with that entity.
The module then processes all NOTIFY requests sent by that entity to maintain its Presence "tuple" or "segment".

A Presence segment value is a string from a fixed set, listed here starting from the lowest priority value to the highest priority one:

The event aggregated value is a segment value with the highest priority, or offline if no segment exists.

When a NOTIFY request is composed, the aggregated value is converted into a presence document in one of the supported formats.

Message Summary

The Signal Module implements the MWI (Message Waiting Indication) Service. The Module supports the simple-message-summary Information format.

The Server itself maintains the "INBOX" tuple/segment for this Event package. The segment value is set to an
array:

The event aggregated value is an array containing the by-element sum of all segment array values.

When a NOTIFY request using the simple-message-summary Information format is composed, the first aggregated array element value is used as the number of new voice messages, and the difference between the second and the first elements is used as the number of old voice messages.
If the first array element value is not zero, the Messages-Waiting element is set to yes, otherwise it is reset to no.

Subscription to the Message Summary package is available to the Account owner, and to other Accounts with the CanImpersonate Access Right.

Registration

The Signal Module implements the Registrar Monitoring Service. The Module supports the reginfo+xml Information format, and it can inform network entities (such as SIP clients) about all other entities registered with an Account.

Subscription to the Registration package is available to the Account owner, and to other Accounts with the CanImpersonate Access Right.


Local Nodes

The CommuniGate Pro Server dynamically creates, runs, and removes Real-Time Nodes.

A Node is an internal CommuniGate Pro Server object that can receive Signal Requests and produce Responses for those Requests. A Node can also send Requests and process Responses.

Various CommuniGate Pro components and modules use Nodes to implement Signaling functions:

You can use the WebAdmin Interface to configure the Nodes component. Open the Real-Time pages in the Settings realm, then open the Nodes page:

Processing
Log Level: Processors: Limit:
Log
Use this setting to specify the type of information the Local Nodes component should put in the Server Log. Usually you should use the Failure (unrecoverable failures only), Major (failures and major events), or Problems (failures, major events, and non-fatal errors) levels. When you experience problems with the Local Nodes component, you may want to set the Log Level setting to Low-Level or All Info: in this case the Node processing internals will be recorded in the System Log. When the problem is solved, set the Log Level setting to its regular value, otherwise your System Log files will grow in size very quickly.
The Local Nodes component records in the System Log are marked with the SIGNODE tag.
Limit
This setting specifies how many Nodes the component can handle at the same time. If this limit is exceeded, attempts to create new Nodes result in an error.
Processors
The Local Nodes component uses several simultaneous processors (threads) to process Nodes. One processor can handle several Nodes tasks.
If you use many Nodes implementing time-consuming operations (complex Real-Time Applications, etc.) you should allow the component to use more processors.

Call Legs

The Server creates special Local Nodes called Call Legs. Each Call Leg terminates signaling for one phone call. Each PBX Task is a Call Leg, and each XIMSS session can create one or more Call Legs to handle phone calls initiated or accepted by the XIMSS session user.

The settings in the Call Legs panel are applied to all types of Call Legs:

Call Legs
Session Expiration: Minimal: Default:
Hop Limit:
Advertise UPDATE:
Session-Expiration
Use this setting to specify how often the parties should exchange the INVITE (or OPTION) requests to verify that the call has not been broken.
Hop Count
Use this setting to specify the Max-Forwards field value for the requests sent with Call Legs.

Call Detail Records (CDRs)

The Signal module can generate Call Detail Records for INVITE and BYE transactions it processes.

CDRs can be generated and stored in CDR Log files.
CDR Log files are stored in the base directory, inside the CDRs subdirectory of the SystemLogs subdirectory.
CDR Log files are text files, with each record stored as a separate line. Each line has the following format:
hh:mm:ss.ddd cdr_data
where hh is the hour, mm is the minute, ss is the second, and ddd is the millisecond of the moment when the CDR record was generated, and the cdr_data is the CDR data.
Monitoring
Record CDRs
Record CDRs
Select this option to generate CDR Log files.

When the External CDR Processor Helper application is enabled, the Signal Module generates CDRs and sends them to that application.

CDR data text has the following format:
01 NNN-method <callID><fromTag><toTag> <from><to> [reqIP][respIP] flags
where:
01
the CDR format version number
NNN
the transaction result code (numeric)
Method
the transaction operation/method (INVITE, BYE).
callID, fromTag, toTag
the dialog Identifier (the Call-ID field, the From field tag parameter, the To field tag parameter).
Note: If a call is terminated by the callee, the fromTag of the BYE transaction is the toTag of the INVITE transaction and vice versa.
from, to
the transaction From and To field URIs.
reqIP
the network (IP) address the transaction request was received from.
respIP
the network (IP) address the transaction response was received from.
flags
optional elements, separated with space symbols:
[auth:accountName]
this element is added if the transaction request is authenticated. The accountName is the name of the authenticated CommuniGate Pro Account.
[redir:accountName]
this element is added if the transaction request was redirected from a local Account. The accountName is the name of that CommuniGate Pro Account.
[billing:billingData]
this element is added if the transaction request has a P-Billing-Id field. The billingData is the field content.

CommuniGate® Pro Guide. Copyright © 1998-2007, Stalker Software, Inc.